Modular actions and amenable representations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Actions and Amenable Representations

Consider a measure-preserving action Γ y (X,μ) of a countable group Γ and a measurable cocycle α : X × Γ → Aut(Y ) with countable image, where (X,μ) is a standard Lebesgue space and (Y, ν) is any probability space. We prove that if the Koopman representation associated to the action Γ y X is non-amenable, then there does not exist a countable-to-one Borel homomorphism from the orbit equivalence...

متن کامل

Amenable actions and applications

We will give a brief account of (topological) amenable actions and exactness for countable discrete groups. The class of exact groups contains most of the familiar groups and yet is manageable enough to provide interesting applications in geometric topology, von Neumann algebras and ergodic theory. Mathematics Subject Classification (2000). Primary 46L35; Secondary 20F65, 37A20, 43A07.

متن کامل

Amenable Actions of Nonamenable Groups

Since 1929 when von Neumann [vN29] introduced the notion of an invariant mean on a group (and more generally on a G-set) there is a permanent interest in the study of the phenomenon known as amenability. Amenable objects like groups, semigroups, algebras, graphs, metric spaces, operator algebras etc. play an important role in different areas of mathematics. A big progress in understanding of th...

متن کامل

Hilbert C-modules and Amenable Actions

We study actions of discrete groups on Hilbert C-modules induced from topological actions on compact Hausdorff spaces. We prove that amenable actions give rise to proper affine isometric actions, provided there is a quasiinvariant measure which is sufficiently close to being invariant in a certain sense. This provides conditions on non-amenability of actions. The notion of amenability of group ...

متن کامل

Amenable Actions and Exactness for Discrete Groups

It is proved that a discrete group G is exact if and only if its left translation action on the Stone-Čech compactification is amenable. Combining this with an unpublished result of Gromov, we have the existence of non exact discrete groups. In [KW], Kirchberg and Wassermann discussed exactness for groups. A discrete group G is said to be exact if its reduced group C-algebra C λ(G) is exact. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2009

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-09-04525-5